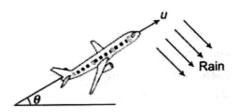


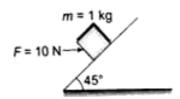
Max. Marks: 300 Date: 21.10.2022

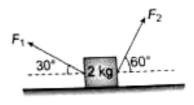

JB 2 MR BATCH PHYSICS: PART TEST SET-B Topic: FLT

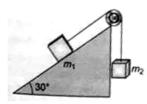
1.	Two vectors \vec{a} and \vec{b} inclined at an	angle θ have a resultant \vec{c}	which makes an angle (3 with \vec{a} .	If the directions
	of \vec{a} and \vec{b} are interchanged, then	the resultant will have the sa	ime		

(a) magnitude

- (b) direction
- (c) magnitude as well as direction
- (d) neither magnitude nor direction
- 2. The sum of two forces acting at a point is 16 N. If the resultant force is 8 N and its direction is perpendicular to minimum force then the forces are
 - (a) 6 N and 10 N
- (b) 8 N and 8 N
- (c) 4 N and 12 N
- (d) 2 N and 14 N

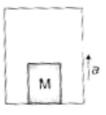

3. Rain is falling with speed $12\sqrt{2}$ m/s at an angle of 45° with vertical line. A man in a glider going at a speed of u at angle of 37° with respect to ground. Find the speed of glider so that rain appears to him falling vertically. Consider motion of glider and rain drops in same vertical plane.


- (a) 15 m/s
- (b) 30 m/s
- (c) 10 m/s
- (d) 25 m/s


4. A body of mass 1 kg lies on smooth inclined plane. The block of mass m is given force F = 10 N horizontally as shown. The magnitude of net normal reaction on the block is:

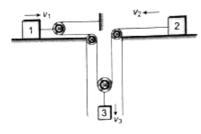
- (a) $10\sqrt{2} \text{ N}$
- (b) $\frac{10}{\sqrt{2}}$ N
- (c) 10 N
- (d) None of these
- 5. A body of mass 2.0 kg is placed on a smooth horizontal surface. Two forces $F_1 = 20$ N and $F_2 = N$ are acting on the body in directions making angles of 30° and 60° to the surface. The reaction of the surface on the body will be

- (a) 20 N
- (b) 25 N
- (c) 5 N
- (d) zero
- 6. M is a fixed wedge. Masses m_1 and m_2 are connected by a light string. The wedge is smooth and the pulley is smooth and fixed. $m_1 = 10$ kg and $m_2 = 7.5$ kg. When m_2 is just released, the distance it will travel in 2 seconds is



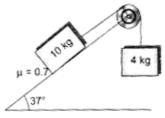
- (a) 2.8 m
- (b) 7.5 m
- (c) 4.0 m
- (d) 6.0 m

Space for Rough Work


7. With what acceleration a should be box of figure moving up so that the block of mass M exerts a force 7 Mg/4 on the floor of the box?

- (a) g/4
- (b) g/2
- (c) 3g/4
- (d) 4g
- 8. In the given diagram, with what force must the man pull the rope to hold the plank in position? Mass of the man is 80 kg. Neglect the weights of plank, rope and pulley. Take $g = 10 \text{ ms}^{-2}$.

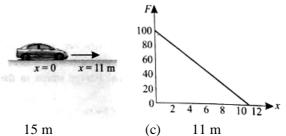
- (a) 200 N
- (b) 300 N
- (c) 600 N
- (d) 150 N
- 9. Three blocks 1, 2 and 3 are arranged as shown in the figure. The velocities of the blocks v_1 , v_2 and v_3 are shown in the figure. What is the relationship between v_1 , v_2 and v_3 ?



- (a) $2v_1 + v_2 = v_3$
- (b)
- $\mathbf{v}_1 + \mathbf{v}_2 = \mathbf{v}_3$
- (c) $v_1 + 2v_2 = v_3$
- (d) None of these

- 10. A block of mass 2 kg rests on a rough inclined plane making an angle of 30° with the horizontal. The coefficient of static friction between the block and the plane is 0.7. The frictional force on the block is
 - (a) 10 N
- $7\sqrt{3}$ N (b)
- $10 \times \sqrt{3} \text{ N}$ (c)
- (d) 7 N

11. In the arrangement shown in the figure [$\sin 37^{\circ} = 3/5$]


- direction of force of friction is up the plane (a)
- the magnitude of force of friction is zero (b)
- the tension in the string is 20 N (c)
- magnitude of force of friction is 56 N (d)
- 12. The work done by external agent in stretching a spring of force constant k = 100 N/cm from deformation $x_1 = 10$ to deformation $x_2 = 20$ cm.
 - -150 J
- 50 J (b)
- 150 J (c)
- None of these (d)
- 13. An elastic spring of unstretched length L and force constant K is stretched by amount x. It is further stretched by another length y. The work done in the second stretching is
 - $\frac{1}{2}$ Ky²

- $\frac{1}{2}K(x^2 + y^2)$ (c) $\frac{1}{2}K(x + y)^2$ (d) $\frac{1}{2}Ky(2x + y)$

5 m

(d)

A toy car of mass 5 kg moves up a ramp under the influence of force F plotted against displacement x. The 14. maximum height attained is given by

20 m (a) (b)

15. A slab S of mass m is released from a height h_0 from the top of a spring of force constant k. The maximum compression x of the spring is given by the equation

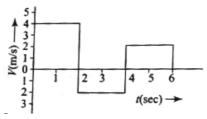
(a)
$$mgh_0 = \frac{1}{2}kx^2$$

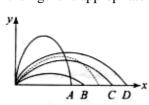
(b)
$$mg(h_0 - x) = \frac{1}{2}kx^2$$

(c)
$$mgh_0 = \frac{1}{2}k(h_0 + x)^2$$

(d)
$$mg(h_0 + x) = \frac{1}{2}kx^2$$

- 16. A particle travels 10 m in first 5 sec and 10 m in next 3 sec. Assuming constant acceleration what is the distance travelled in next 2 sec
 - (a) 8.3 m
- (b) 9.3 m
- (c) 10.3 m
- (d) None of above
- 17. A car moving at 160 km/h when passes the mark-A, driver applies brake and reduces its speed uniformly to 40 km/h at mark-C. The marks are spaced at equal distances along the road as shown below.

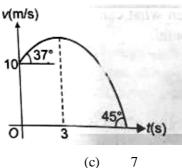

At which part of the track the car has instantaneous speed of 100 km/h? Neglect the size of the car.


(a) At mark-B

- (b) Between mark-A and mark-B
- (c) between mark-B and mark-C
- (d) insufficient information to decide
- 18. A particle is moving along a straight line with constant acceleration. At the end of tenth second its velocity becomes 20 m/s and in tenth second it travels a distance of 10 m. Then the acceleration of the particle will be
 - (a) 10 m/s^2
- (b) 20 m/s^2
- (c) $\frac{1}{5}$ m/s²
- (d) 3.8 m/s^2

- 19. Two cars are moving in the same direction with the same speed 30 km/hr. They are separated by a distance of 5 km, the speed of a car moving in the opposite direction if it meets these two cars at an interval of 4 minutes, will be
 - (a) 40 km/hr
- (b) 45 km/hr
- 30 km/hr (c)
- (d) 15 km/hr
- An elevator, in which a man is standing, is moving upward with a constant acceleration of 2 m/s². At some instant 20. when speed of elevator is 10 m/s, the man drops a coin from a height of 1.5 m. Find the time taken by the coin to reach the floor.
 - $\frac{1}{\sqrt{3}}$ sec
- (b) $\frac{1}{2} \sec$ (c) $\frac{1}{\sqrt{2}} \sec$
- (d)
- The velocity-time graph of a body moving in a straight line is shown in the figure. The displacement and distance 21. travelled by the body in 6 sec are resepectively

- 8 m, 16 m (a)
- 16 m, 8 m (b)
- 16 m, 16 m (c)
- (d) 8 m, 8 m
- 22. The path of a projectile in the absence of air drag is shown in the figure by dotted line. If the air resistance is not ignored then which one of the path shown in the figure is appropriate for the projectile



- (a)
 - В
- (b)
- D (c)
- C (d)

Space for Rough Work

- A stone is projected from the ground with velocity 50 m/s at an angle of 30°. It crosses a wall after 3 sec. How 23. far beyond the wall the stone will strike the ground ($g = 10 \text{ m/sec}^2$)?
 - 90.2 m (a)
- (b) 89.6 m
- 86.6 m (c)
- (d) 70.2 m
- A particle starts moving with velocity 10 m/s in a straight line under an acceleration varying linearly with time. 24. Its velocity time graph is as shown in figure. Its velocity is maximum at t = 3 sec. The time (in sec) when the particle stops is $(\tan 37^{\circ} = 3/4)$

- 6 (a)
- (b) 8

- 5 (d)
- 25. When two vectors of magnitudes P and Q are inclined at an angle θ the magnitude of their resultant 2P. When the inclination is changed to $180 - \theta$ the magnitude of the resultant is halved. Find the ratio of P to Q.
 - $\sqrt{2}:\sqrt{3}$ (a)
- $1:\sqrt{3}$ (b)
- $1:\sqrt{2}$ (c)
- $\sqrt{3}:\sqrt{2}$ (d)

Date: 21.10.2022

JB 2 MR BATCH CHEMISTRY: PART TEST SET-B Topic: FLT

26.		-		and chemical prope scovered respectively		the elements. Eka – t	ooron, El	ka – silicon and Eka –		
	(a)	Ge, Sc, Ga	(b)	Sc, Ge, Ga	(c)	Al, Ga, Ge	(d)	Ge, Al, Ga		
27.	Lotha	ar Meyer obtained th	e curve	for the known elemen	nts by pl	otting their atomic vo	olumes a	gainst		
	(a)	atomic numbers	(b)	atomic masses	(c)	densities	(d)	ionization energies		
28.	The c	correct order of the s	ize of C,	N, P and S is						
	(a)	N < C < P < S	(b)	C < N < P < S	(c)	C < N < S < P	(d)	N < C < S < P		
29.	(A), (B) and (C) are elements in the third short period. Oxide of (A) is ionic, that of (B) is amphoteric and that of									
	(C) is	a giant molecule. T	hen (A),	(B) and (C) have ato	omic nur	nber in the order				
	(a)	(C) < (B) < (A)	(b)	(A) < (B) < (C)	(c)	(A) < (C) < (B)	(d)	(B) < (A) < (C)		
30.	How	many Cs atoms can	be conv	erted to Cs ⁺ ions by 1	joule e	nergy if IE ₁ for Cs is	376 Kj n	nol^{-1}		
	(a)	1.6×10^{18}	(b)	1.6×10^{10}	(c)	5.8×10^{14}	(d)	5.8×10^{25}		
31.	Equiv	valent weight of H ₂ C	o_2 is							
	(a)	17	(b)	34	(c)	68	(d)	18		
32.	2 g o	f a metal oxide on st	rong hea	ating gave 112 ml of	O ₂ gas a	t STP. Equivalent of	the meta	lis		
	(a)	56	(b)	92	(c)	112	(d)	50		
33.				with certain weight of from an acid. The eq				The same amount of		
	(a)	40	(b)	20	(c)	80	(d)	10		
34.	For w	hich of the followin	g compo	ound equivalent weig	ht is equ	al to molecular weig	ht			
	(a)	H_2SO_4	(b)	H_3PO_2	(c)	H_3PO_4	(d)	H_3PO_3		

35.	The at	omic number of eler	ment Un	q is:				
	(a)	102	(b)	103	(c)	104	(d)	105
36.	The te	mperature at which	RMS ve	locity of SO ₂ molecul	les is hal	f that of He molecule	s at 300	K
	(a)	150	(b)	600 K	(c)	900 K	(d)	1200 K
37.	Which	is correct with resp	ect to 'p'	orbitals				
	(a)	They are spherical	1		(b)	They have a strong	direction	al character
	(c)	They are five fold	degener	ate	(d)	They have no direct	ional ch	aracter
38.	The m	aximum number of	electron	s in an atom with $l=2$	2 and n =	= 3 is		
	(a)	2	(b)	6	(c)	12	(d)	10
39.	Conta	iners A and B have	the same	e gas. Pressure, volur	ne and t	emperature of A are	all twice	those of B, then the
	ratio o	f number of molecu	les of A	to B is				
	(a)	1:2	(b)	4:1	(c)	1:4	(d)	2:1
40.	The fo	ollowing electronic to	ransition	corresponds to the sl	hortest w	vave length (n = no. o	f orbit)	
	(a)	$n5 \rightarrow n1$	(b)	$n5 \rightarrow n3$	(c)	$n5 \rightarrow n2$	(d)	$n5 \rightarrow n4$
41.	What	is the wave number	of yellov	w radiation having wa	velengtl	h 5800 Å (in cm ⁻¹)		
	(a)	5.17×10^{14}	(b)	1.7×10^4	(c)	4×10^{14}	(d)	3.4×10^{14}
42.	Photo	electron emission is	observe	d from a surface for f	requenci	es v ₁ and v ₂ and of th	e incide	nt radiation $(v_1 > v_2)$
	If the	maximum kinetic e	nergies (of the photoelectrons	in the t	wo cases are in the r	atio 1 :	K then the threshold
	freque	ncy v ₀ is given by						
	(a)	$\frac{\mathbf{v}_2 - \mathbf{v}_1}{\mathbf{K} - 1}$	(b)	$\frac{\mathbf{k}\mathbf{v}_1 - \mathbf{v}_2}{\mathbf{K} - 1}$	(c)	$\frac{kv_2 - v_1}{K - 1}$	(d)	$\frac{\mathbf{v}_2 - \mathbf{v}_1}{\mathbf{K}}$
43.	The m	aximum number of	electron	s that can be accomm	odated i	n a 3d subshell is		
	(a)	2	(b)	10	(c)	6	(d)	14

44.	Which	of the following sta	tements	concerning sunlight i	s false?					
	(a)	It is a form of energy				It cannot be deflected by a magnet				
	(c)	It consists of photo	ons of sa	ame energy	(d)	It is a part of electro	magneti	c spectrum		
45.	Numbe	er of waves produce	d by an	electron in one compl	ete revol	lution in n th orbit is:				
	(a)	n	(b)	n^2	(c)	(n+1)	(d)	(2n + 1)		
46.	One we	ould expect proton t	o have v	very large						
	(a)	Ionization potentia	ıl		(b)	Radius				
	(c)	Charge			(d)	Hydration energy				
47.	Atoms have a mass of the order									
	(a)	$10^{-26} \mathrm{kg}$	(b)	10^{-15} kg	(c)	$10^{-26} \mathrm{g}$	(d)	$10^{-15} \mathrm{g}$		
48.	The electronic velocity in fourth Bohr orbit of hydrogen is V. The velocity of electron in the first Bohr orbit									
	would	be:								
	(a)	4V	(b)	16V	(c)	V/4	(d)	V/16		
49.	At STI	P 5.6 L of a gas weig	gh 60 g.	The vapour density of	f gas is:					
	(a)	60	(b)	120	(c)	30	(d)	240		
50.	9 g of 1	trivalent metal comb	ines wit	th 8 g of oxygen. The	atomic 1	mass of the metal is				
	(a)	9	(b)	18	(c)	27	(d)	36		

Date: 21.10.2022

JB 2 MR BATCH MATHEMATICS: PART TEST SET-B Topic: FLT

51.	A question paper is divided into two parts A and B and each part contains 5 questions. The number of ways in									
	which	a candidate can ans	wer 6 qu	estions selecting at le	ast two	questions from each p	art is			
	(a)	200	(b)	100	(c)	80	(d)	None of these		
52.	The va	lue of e ^{(log₁₈ cot 1°+1}	og ₁₀ cot 2°	°++log ₁₀ cot 89°) is						
	(a)	0	(b)	$\frac{1}{e}$	(c)	1	(d)	e		
53.	sin ² 5°	$+\sin^2 10^\circ + \sin^2 15$	°++	$\sin^2 85^\circ + \sin^2 90^\circ =$						
	(a)	$9\frac{1}{2}$	(b)	9	(c)	8	(d)	7		
54.	If $\log_{\cos x} \sin x = 0.5$, when $0 < x < 90^{\circ}$, then the value of $\cos x =$									
	(a)	$\frac{\sqrt{5}+1}{4}$	(b)	$\frac{\sqrt{5}-1}{4}$	(c)	$\frac{\sqrt{5}-1}{2}$	(d)	$\frac{\sqrt{5}+1}{2}$		
55.	If $\frac{\cos^4}{\cos^2}$	$\frac{4}{2}\frac{\alpha}{\beta} + \frac{\sin^4 \alpha}{\sin^2 \beta} = 1 \text{ th}$	en the va	alue of $\frac{\cos^4 \beta}{\cos^2 \beta} + \frac{\sin^4 \beta}{\sin^2 \beta}$	$\frac{\beta}{\alpha}$ is eq	ual to				
	(a)	0	(b)	1	(c)	2	(d)	4		
56.	The tot	tal number of select	ions of a	t most n things from	(2n + 1)	different things is 63.	Then t	he value of n is		
	(a)	4	(b)	3	(c)	2	(d)	None of these		
57.		numbers of words		can be formed out of	the lette	ers a, b, c, d, e, f tak	en 3 tog	gether such that each		
	(a)	48	(b)	96	(c)	72	(d)	None of these		

The product of real roots of the equation

(b)

 $|2x + 3|^2 - 3|2x + 3| + 2 = 0$ is

2

(a)

64.

58.	A fathe	er with 8 children ta	kes then	n 3 at a time to zoolog	gical gar	dens, as often as he c	an witho	out taking the same 3
	childre	n together more tha	n once.	The number of times	each ch	ild will go to the gard	en is	
	(a)	112	(b)	21	(c)	56	(d)	None of these
59.	A dicti	onary is printed cor	nsisting	of 7 lettered words or	nly than	can be made with a le	etter of t	the word CRICKET.
	If the v	words are printed at	the alph	abetical order, as in a	ın ordina	ary dictionary, then th	e numbe	er of word before the
	word C	CRICKET is						
	(a)	481	(b)	530	(c)	531	(d)	480
60.	If a, b,	c are three natural	numbers	s in A.P. and $a + b +$	c = 21,	then the possible nun	nber of v	values of the ordered
	triplet	(a, b, c) is						
	(a)	13	(b)	15	(c)	14	(d)	None of these
61.	The pr	oduct of the roots of	f the equ	ation				
	x^2-4n	$nx + 3e^{2\log m} - 4 =$	= 0 is 8,					
	then its	s roots will be real w	vhen m e	equals				
	(a)	$\pm\sqrt{2}$	(b)	±2	(c)	$\sqrt{2}$	(d)	1
62.	The nu	mber of solution of	the equa	ation				
	sin (a ^x)	$+\cos\left(a^{x}\right)=a^{x}+a^{-x}$	x is a > 0)				
	(a)	3	(b)	1	(c)	2	(d)	0
<i>(</i> 2	IC 0			2 + 2 + 2 = 0 (- +0)	μ α	2 β^2 .		
63.	пα,р	are roots of the equ	iation ax	$x^2 + 3x + 2 = 0 \ (a < 0)$	then $\frac{-}{\beta}$	$\frac{2}{\alpha} + \frac{\beta^2}{\alpha}$ is greater than	1	
	(a)	2	(b)	1	(c)	0	(d)	None of these

3

(c) $\frac{5}{2}$

(d)

5

- Two students while solving a quadratic equation in x with leading coefficient 'I' one copied the constant term 65. incorrectly and got the roots 3 and 2. The other copied the constant term correctly -6. The correct roots are
 - (a) -1, 6
- (b) -6, -1
- -2, 3
- (d) -3, 2
- If α and β are the roots of equation $8x^2 3x + 27 = 0$ then $\left(\frac{\alpha^2}{\beta}\right)^{1/3} + \left(\frac{\beta^2}{\alpha}\right)^{1/3}$ is equal to 66.
- (b)
- (d)
- If α and β are the roots of $x^2 2x + 4 = 0$ then $\alpha^5 + \beta^5$ is equal to 67.
 - (a)
- (c)
- (d) None of these
- In a geometric progression consisting of positive terms each term equals the sum of the next two term. Then the 68. common ratio of this progression equals
 - - $\frac{1}{2}(\sqrt{5}-1)$ (b) $\frac{1}{2}\sqrt{5}$
- $\sqrt{5}$ (c)
- (d) $\frac{1}{\sqrt{2}}(1+\sqrt{5})$

- $1^3 2^3 + 3^3 4^3 + \dots + 9^3 =$ 69.
- 425
- 475 (c)
- (d) -425

- If $\log_0 (3^{1+x} + 2)$, $\log_3 (4 + 3^x 1)$ are in A.P., then x equals 70.
 - $1 \log_3 4$
- (b) $log_4 3$
- (c) $log_3 4$
- (d) $1 - \log_4 3$

- The sum of the series $\frac{1}{2} + \frac{3}{4} + \frac{7}{8} + \frac{15}{16} + \dots$ upto n terms is 71.
 - (a) $n-1+\frac{1}{2^n}$ (b) $n+\frac{1}{2^n}$
- (c) $2n + \frac{1}{2^n}$
- (d) $n+1+\frac{1}{2^n}$

- If $x^2 + 9y^2 + 25z^2 = xyz \left(\frac{15}{x} + \frac{5}{y} + \frac{3}{z} \right)$, then x, y and z are in 72.
 - A.P. (a)
- G.P. (b)
- (c) A.G.P.
- (d) H.P.

73.
$$2^{1/4}$$
, $4^{1/8}$, $8^{1/16}$... up to ∞ is equal to

- (a) 1
- 2 (b)
- (c)
- (d) None of these

$$\frac{1}{1+\sqrt{3}} + \frac{1}{\sqrt{3}+\sqrt{5}} + \frac{1}{\sqrt{5}+\sqrt{7}} + \dots$$
 is

- $\sqrt{2n+1}$ (b) $\frac{1}{2}\sqrt{2n+1}$ (c) $\sqrt{2n+1}-1$ (d) $\frac{1}{2}(\sqrt{2n+1}-1)$

75. The value of
$${}^{40}C_{31} + \sum_{j=0}^{10} {}^{40+j}C_{10+j}$$
 is equal to

- 2.45C₁₅ (a)
- (b) $^{51}C_{20}$
- $2.50C_{20}$ (c)
- (d) None of these

Max. Marks: 300 Date: 21.10.2022

JB 2 MR BATCH PHYSICS: PART TEST SET-B ANSWER KEY Topic: FLT

1.	(a)	2.	(a)	3.	(a)	4.	(a)	5.	(d)
6.	(a)	7.	(c)	8.	(a)	9.	(d)	10.	(a)
11.	(a)	12.	(c)	13.	(d)	14.	(c)	15.	(d)
16.	(a)	17.	(c)	18.	(b)	19.	(b)	20.	(b)
21.	(a)	22.	(a)	23.	(c)	24.	(c)	25.	(a)

CHEMISTRY : PART TEST SET-B ANSWER KEY Topic: FLT

26.	(b)	27.	(b)	28.	(d)	29.	(b)	30.	(a)
31.	(a)	32.	(b)	33.	(b)	34.	(b)	35.	(c)
36.	(d)	37.	(b)	38.	(d)	39.	(d)	40.	(a)
41.	(b)	42.	(b)	43.	(b)	44.	(c)	45.	(a)
46.	(d)	47.	(a)	48.	(a)	49.	(b)	50.	(c)

MATHEMATICS : PART TEST SET-B ANSWER KEY Topic: FLT

51.	(a)	52.	(c)	53.	(a)	54.	(c)	55.	(b)
56.	(d)	57.	(b)	58.	(b)	59.	(b)	60.	(a)
61.	(b)	62.	(d)	63.	(d)	64.	(c)	65.	(a)
66.	(a)	67.	(b)	68.	(a)	69.	(b)	70.	(a)
71.	(a)	72.	(d)	73.	(b)	74.	(d)	75.	(b)